
1. INTRODUCTION

These notes, primarily for my own reference, briefly de-
scribe how my programs calculate the maximum Lyapunov
exponent.  There is nothing extraordinary in how I do it – the
method is described in ample detail by well-known
references, e.g. Wolf  et al. (1985, Physica D 16, 285) and
Benettin et al. (1976, Phys. Rev. A 14, 2338).

Consider two orbits, a "reference" orbit and a "test" orbit,
separated at time t0 by a small phase space distance d0.  We
will use the test orbit as a means of calculating the value of
the maximum Lyapunov exponent.  Under evolution of the
equations of motion, the two orbits may (or may not) separate.
If the motion is chaotic, the orbits will, by definition, separate
at an exponential rate.  The maximum Lyapunov exponent λ
is a measure of this rate of separation:

(1)k =
td∞
lim 1

t − t0
ln

d(t)
d0

Hence, in the limit of infinite time,

(2)k =
td∞
lim 1

t − t0
ln

d(t)
d0

In practice, we cannot afford the luxury of infinitely long
integrations, so we instead calculate the instantaneous maxi-
mum Lyapunov exponent

(3)k(t) = 1
t − t0

ln
d(t)
d0

and, ideally, wait long enough for λ(t) to settle to approxi-
mately its asymptotic value, if indeed it is non zero for the or-
bit of interest.  A simple method of calculating λ(t) is shown
in section 2.  Another practical problem is that, for chaotic
orbits, the distance between reference and test particles, d(t),
quickly saturates.  Hence we must periodically renormalize
the orbit separation.  This is shown in section 3.  Section 4
presents the derivation of eq. (7) in more detail.

2. EXPONENT CALCULATION

We will leave the reference orbit alone and rescale the test
orbit whenever the separation d(t) has passed beyond a
threshold value D.  It is important that D be set small enough
that it is still in the linear regime (i.e., the regime in which
the linearized equations of motion are an accurate
description).  Define a rescaling parameter:

(4)a1 h
d(t1)
d(t0)

where t1 is the time at which .  Then we can writed(t) m D

(5)k1 = 1
t1 − t0

ln
d1

d0
= 1

t1 − t0
ln a1

where  and .  At this point, the test orbit isk i h k(t i) d i h d(t i)
then rescaled, as shown in section 3.  Similarly, for successive
threshold crossings and subsequent rescalings, we have

(6)

k2 = 1
t2 − t0

ln
d2 $ a1

d0

= 1
t2 − t0

ln(a1 $ a2 )

k3 = 1
t3 − t0

ln
d3 $ a2 $ a1

d0

= 1
t3 − t0

ln(a1 $ a2 $ a3 )

§

and so on.  The multiplicative factors   are de-a1, a1 $ a2 , ¢
rived in section 4, in case it is not intuitively obvious.  We
therefore conclude that the instantaneous Lyapunov exponent
is 

(7)kn = 1
tn − t0 S

i=1

n

ln a i

where we have defined

(8)a i h
d(t i)
d(t0)

As long as the rescalings take place in the linear regime,
this construction is valid.  Notice that, in a computer, only the
accumulating sum of the natural log of the αi need be stored.
In addition, the time intervals need not be evenly spaced.

3. RENORMALIZATION OF THE TEST ORBIT

The rescaling of the test particle orbit is performed on the
test - reference phase space distance vector.  Whenever the
distance d(t) becomes greater than or equal to the threshold
D, we scale the test particle distance from the reference parti-
cle by the factor 1/αi, maintaining the current relative orienta-
tion between the two particles in phase space.  Write the ref-
erence and test particle phase space vectors as

(9)R h

x
y
z
vx

vy

vz
ref

and r h

x
y
z
vx

vy

vz
test
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Define .  Then the adjustment to the test particleqq h r − R
phase space coordinates at time ti is

(10)r i b R i +
qq i
a i

Alternatively, one could write the equivalent expression

(11)r i b r i − a i − 1
a i

$ qq i

Eq. (10) is slightly less expensive to calculate than eq. (11).
All we are doing is rescaling the distance d(t), 

(12)d(t i) b
d(t i)
a i

in the appropriate direction in phase space.
I have found that  and  work well in prac-d0 = 10−6 D = 10−4

tice.  The figure below  shows the instantaneous Lyapunov
exponent for a chaotic restricted three-body orbit, with several
values of d0 ranging from 10-5 to 10-15, with a rescaling
threshold of 10-4.  One can see that values of d0 in the range
10-5 to 10-8 are adequate.  Smaller than this invites numerical
trouble due to the finite word size of the machine.  
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I have also found that any difference between using the full
phase space distance

(13)x2 + y2 + z2 + vx
2 + vy

2 + vz
2

and using only the configuration space distance

(14)x2 + y2 + z2

is indiscernible.

4. EXPLANATION OF SUMMATION

In this section, for completeness, I derive the multiplicative
factors in the distances in the logarithms of eq. (7) and the
equations leading up to it.  Consider eq. (1).  At a time t1, 

(15)d1 = d0 ek1t1

Upon rescaling,

(16)d1 b d0ek1t1

a1

At the next rescaling time t2, 

(17)d2 = d1 ek1$(t2−t1 )

where d1 is the rescaled value (i.e., d0).  Inserting eq. (16) for
d1, we have

(18)d2 = d0ek2t2

a1

where we have assumed the increment in time is small so that
.  Upon rescaling, eq. (18) becomesk1 l k2

(19)d2 b d2
a2

where, using eq. (18),

(20)a2 = d2

d0
= ek2t2

a1

Hence, from eq. (20), we have

(21)k2 = 1
t2

ln(a1a2 )

which is eq. (6).  Extending this process further, we conclude
eq. (7).  
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